SourceForge Logo
P.I.G.A.L.E.
1.3.9
Public Implementation of a Graph Algorithm
Library and Editor

H. de Fraysseix      P. Ossona de Mendez

Distances used in Pigale

The following distances are used to embed a graph in Rn

$ \text{Czekanovski-Dice distance} $ $ \qquad d^2(i,j)=1-\frac{|N(i)\cap N(j)|}{|N(i)|+|N(j)|} $

$ \text{Oriented distance} $ $ \qquad d^2(i,j)=1-\frac{|N^-(i)\cap N^-(j)|}{|N^-(i)|+|N^-(j)|}-\frac{|N^+(i)\cap N^+(j)|}{|N^+(i)|+|N^+(j)|} $

$ \text{Adjacency distance (not Euclidean)} $ $ \qquad d^2(i,j)=\begin{cases} 0,&\text{if $i=j$ or $i$ and $j$ are adjacent}\\ 1,&\text{otherwise} \end{cases} $

$ \text{Translated adjacency distance}$ $ \qquad d^2(i,j)=\begin{cases} 0,&\text{if $i=j$}\\ 1-\frac{2}{n},&\text{if $i$ and $j$ are adjacent}\\ 1,&\text{otherwise} \end{cases} $

$ \text{Bisection distance} $ $ \qquad d^2(i,j)=\begin{cases} 0,&\text{if $i=j$}\\ 1-\frac{2}{d(i)+d(j)+2},&\text{if $i$ and $j$ are adjacent}\\ 1,&\text{otherwise} \end{cases} $

$ \mathbb{R}^2\text{distance} $ $ \qquad d^2(i,j)=x^2(i)+y^2(i) $

$ \text{Laplacian distance}$ $ \qquad d^2(i,j)=\begin{cases} 0,&\text{if $i=j$}\\ 2n-d(i)-d(j),&\text{if $i$ and $j$ are adjacent}\\ 2n-d(i)-d(j)+2,&\text{otherwise} \end{cases} $

$ \text{Q distance} $ $ \qquad d^2(i,j)=\begin{cases} 0,&\text{if $i=j$}\\ 1,&\text{if $i$ and $j$ are non adjacent}\\ 1-\frac{1}{\sqrt{d(i)d(j)}},&\text{otherwise} \end{cases} $

Generated on Thu Jan 31 16:51:36 2008 for Pigale by  doxygen 1.5.4